hi boy
"Ugol" magazin

ECOLOGY


Original Paper

UDC 681.5:628.31 © P.P. Ivanov 1, S.G. Pachkin 1, R.V. Kotlyarov 2, L.A. Ivanova 1, E.S. Mikhailova 1, 2024

ISSN 0041-5790 (Print) • ISSN 2412-8333 (Online) • Ugol’ – Russian Coal Journal, 2024, № 6, pp. 101-106

DOI: http://dx.DOI:.org/10.18796/0041-5790-2024-6-101-106

Title

AUTOMATION OF THE CONTINUOUS COAGULANT TREATMENT PROCESS OF OPEN PIT WASTEWATERS

Authors

P.P. Ivanov 1, S.G. Pachkin 1, R.V. Kotlyarov 2, L.A. Ivanova 1, E.S. Mikhailova 1.

1 Kemerovo State University, Kemerovo, 650000, Russian Federation

2 T.F. Gorbachev Kuzbass State Technical University (KuzSTU), Kemerovo, 650000, Russian Federatione-mail: ipp7@yandex.ru

Authors Information

Ivanov P.P. – PhD (Engineering), Associate Professor, Associate Professor of the Department of Mechatronics and Automation of Technological Systems, Kemerovo State University, Kemerovo, 650000, Russian Federation, e-mail: ipp7@yandex.ru

Pachkin S.G. – PhD (Engineering), Associate Professor, Associate Professor of the Department of Mechatronics and Automation of Technological Systems, Kemerovo State University, Kemerovo, 650000, Russian Federation, e-mail: sergon777@inbox.ru

Kotlyarov R.V. – PhD (Engineering), Associate Professor, Associate Professor of the Department of Electric Drive and Automation, T.F. Gorbachev Kuzbass State Technical University (KuzSTU), Kemerovo, 650000, Russian Federation, e-mail: kotlyarovrv@kuzstu.ru

Ivanova L.A. – PhD (Engineering), Associate Professor, Associate Professor of the Department of Technosphere Safety, Kemerovo State University, Kemerovo, 650000, Russian Federation, e-mail: lyuda_ivan@mail.ru

Mikhailova E.S. – PhD (Chemistry), Head of the Department for Implementation of Integrated Scientific and Technical Program, Kemerovo State University, Kemerovo, 650000, Russian Federation, e-mail: e_s_mihaylova@mail.ru

Abstract

One of the methods to treat open-pit wastewater is coagulation, which is carried out by continuous introduction of coagulants to form a suspended mixture that contains aggregates of polluting particles. Suspension separation and removal of the dispersed phase can be effectively performed using a hydrocyclone. Stability of the hydrocyclone operation and the high efficiency of the separation process are ensured by calculation and selection of the hydrocyclone design parameters, as well as by automatic regulation of technological variables of the separation process. An automation scheme of the coagulation process is proposed. An automatic control system (ACS) of the main technological parameter, i.e. pressure in the hydrocyclone – is studied. A structural automatic pressure control system is designed, and the transfer functions of ACS elements are obtained. Parameters for the automatic pressure controller are calculated. Analysis of the ACS modelling results using the Simulink Matlab application tools has shown the efficiency of applying the PID-law for pressure control in the hydrocyclone.

Keywords

Coagulant treatment, оpen pit wastewater, hydrocyclone, automatic pressure control system, transfer function, automatic controller, simulation.

References

1. Буренин В.В. Очистка и обезвреживание производственных сточных вод промышленных предприятий // Безопасность жизнедеятельности. 2019. № 1. С. 25-34. Burenin V.V. Treatment and disposal of industrial wastewater from industrial enterprises. Bezopasnost’ zhiznedeyatel’nosti. 2019;(1):25-34. (InRuss.).

2. Ромащенко М.М., Нестерова Н.В. Промышленная очистка воды // Конструирование, использование и надежность машин сельскохозяйственного назначения. 2019. № 1. С. 358-363. R omashchenko M.M., Nesterova N.V. Industrial water treatment. Konstruirovanie,ispol’zovanie i nadezhnost’ mashin sel’skohozyajst-vennogonaznacheniya. 2019;(1):358-363. (In Russ.).

3. Овчинников, Н.П., Зырянов И.В. Гидромеханизированный комплекс по очистке шахтных вод от крупных механических примесей // Горный информационно-аналитический бюллетень (научно-технический журнал). 2022. № 5-2. С. 114-123. DOI: 10.25018/0236-1493-2022-52-0-114. Ovchinnikov N.P., Zyryanov I.V. Hydromechanized complex for purification of mine waters from large mechanical impurities. Gornyj informatsionno-analiticheskij byulleten’. 2022;(5-2):114-123. DOI: 10.25018/0236-1493-2022-52-0-114. (In Russ.).

4. Фалова О.Е., Каменскова Т., Титова Д. Перспективные методы очистки сточных вод // Вестник Луганского национального университета имени Владимира Даля. 2019. № 10(28). С. 140-142. F alova O.E., Kamenskova T., Titova D. Promising methods of wastewater treatment. Vestnik Luganskogo natsional’nogo universiteta imeni

Vladimira Dalya. 2019;10(28):140-142. (In Russ.).

5. Модернизацияоборудованияиреконструкциязаводовчернойметаллургиизарубежом // Чернаяметаллургия. Бюллетеньнаучно-техническойиэкономическойинформации. 2022. Т. 78. № 1. С. 86-91. Modernization of equipment and reconstruction of ferrous metallurgy plants abroad. Ferrous metallurgy. Chernaya metallurgiya. Byulleten’nauchno-tekhnicheskoj i ekonomicheskoj informatsii. 2022;78(1):86-91. (InRuss.).

6. Соломахин А.М., Боронтова М.А. Совершенствование систем очистки поверхностного стока предприятий // Молодой ученый. 2022. № 46(441). С. 18-22. Solomahin A.M., Borontova M.A. Improving surface runoff treatment systems. Molodoj uchenyj. 2022;46(441):18-22. (InRuss.).

7. Применение аппаратов с интенсивной гидродинамической средой для очистки крупнотоннажных промышленных стоков от нерастворимых примесей / Д.В. Алексеев, А.А. Шагивалеев, Л.Р. Уразбахтина, и др. // Вестник Казанского технологического университета. 2014. Т. 17. № 20. С. 234-241. A lekseev D.V., Shagivaleev A.A., Urazbahtina L.R., Pavlova I.V. The use of devices with an intense hydrodynamic environment for the purification of large-scale industrial wastewater from insoluble impurities. Vestnik Kazanskogo tekhnologicheskogo universiteta. 2014;17(20): 234-241. (In Russ.).

8. R ui Wang, Ziang Zhang, Xiaokang Yan, Haijun Zhang, Lijun Wang. Hydrocyclone separation enhancement of fine particles based on interface control. Minerals Engineering. 2024;(209):108-128. DOI: 10.1016/j.mineng.2024.108628.

9. Wenjie Lv, Kaiqing Zhao, Shihao Ma, Lingkai Kong, Zhihong Dang, Jianqi Chen, Yanhong Zhang, Jun Hu. Process of removing heavy metal ions and solids suspended in micro-scale intensified by hydrocyclone. Journal of Cleaner Production. 2020;(263):121-133. DOI: 10.1016/j.jclepro.2020.121533.

10. Siti Khodijah Chaerun, Erian Jeremy, Raudhatul Islam Chaerun, Riri Lidya Fathira, Muhammad Iqbal Toynbee, Supandi Supandi, Tsutomu Sato. Coal mine wastes: Effective mitigation of coal waste slurry and acid mine drainage through bioflocculation using mixotrophic bacteria as bioflocculants. International Journal of Coal Geology. 2023;(279):104-117. DOI: 10.1016/j.coal.2023.104370.

11. Ejimofor M.I., Ezemagu I.G., Menkiti M.C. Physiochemical, Instrumental and thermal characterization of the post coagulation sludge from paint industrial wastewater treatment. South AfricanJournal of Chemical Engineering. 2021;(37):150-160. DOI: 10.1016/j.sajce.2021.05.008.

12. СедоваЕ.Л., ВоронцовК.Б., БурковаС.А. Влияниеусловийкоагуляционнойобработкинаэффективностьочисткилигнинсодержащейсточнойводыподаннымпланированногоэксперимента

// Известия высших учебных заведений. Лесной журнал. 2019. № 4(370). С. 159-167. DOI: 10.17238/issn0536-1036.2019.4.159. Sedova E.L., Voroncov K.B., Burkova S.A. The influence of coagulation treatment conditions on the efficiency of purification of lignincontaining wastewater according to a planned experiment. Izvestiyavysshih uchebnyh zavedenij. Lesnoj zhurnal. 2019;4(370):159-167. DOI: 10.17238/issn0536-1036.2019.4.159. (In Russ.).

13. Jianqi Chen, Lu Wang, Shihao Ma, Yujie Ji, Bing Liu, Yuan Huang, Jianping Li, Hualin Wang, Wenjie Lv. Separation of fine waste catalyst particles from methanol-to-olefin quench water via swirl regenerating micro-channel separation (SRMS): A pilot-scale study. ProcessSafety and Environmental Protection. 2021;(152):108-116. DOI: 10.1016/j.psep.2021.05.037.

14. ГераськинВ.М. РазвитиеавтоматизациииинформационныхтехнологийнаГайскомГОКе // Горныйжурнал. 2019. № 7. С. 40-42. G eras’kin V.M. Development of automation and information technologies at Gaisky GOK. Gornyj zhurnal. 2019;(7):40-42. (In Russ.).

15. Ефремкин С.И., Верстаков Е.С., Пыльнева Д.В. Разработка автоматизированной системы плавучей насосной станции // Наукосфера. 2020. № 6. С. 235-237. Efremkin S.I., Verstakov E.S., Pyl’neva D.V. Development of an automated floating pumping station system. Naukosfera. 2020;(6):235-237. (In Russ.).

16. Технология и автоматизированное управление процессами современной калийной обогатительной фабрики / Б.А. Вишняк, Т.В. Сереброва, И.В. Колунтаев и др. // Горная механика и машиностроение. 2021. № 1. С. 29-39. Vishnyak B.A., Serebrova T.V., Koluntaev I.V., Hnykin A.G. Technology and automated process control of a modern potash concentration plant. Gornaya mekhanika i mashinostroenie. 2021;(1):29-39. (In Russ.).

17. Окунев С.М., Герасименко Е.Г., Кобыляцкая О.Г. Результаты модернизации и автоматизации основного оборудования обогатительной фабрики // Горный журнал. 2022. № 6. С. 35-37. Okunev S.M., Gerasimenko E.G., Kobylyatskaya O.G. Results of modernization and automation of the main equipment of the concentration

plant. Gornyj zhurnal 2022;(6):35-37. (In Russ.).

18. Разработка распределенной диспетчерской системы управления процессом доочистки карьерных сточных вод / С.Г. Пачкин, П.П. Иванов, Л.А Иванова и др. // Уголь. 2023. № 10. С. 82-88. DOI: 10.18796/0041– 5790-2023-10-82-88. Pachkin S.G., Ivanov P.P., Ivanova L.A., Mikhailova E.S., Semenov A.G.

Development of a distributed dispatch control system for the process of post-treatment of quarry wastewater. Ugol’. 2023;(10):82-88. (In Russ.). DOI: 10.18796/0041-5790-2023-10-82-88.

19. Чайка В.А. Автоматизированный электропривод и система управления насосными агрегатами на Балхашской обогатительной фабрике // Молодой ученый. 2019. № 2(240). С. 37-40. Chajka V.A. Automated electric drive and control system for pumping units at the Balkhash processing plant. Molodoj uchenyj. 2019;2(240):37-40. (In Russ.).

20. Чепурдеев А.А. Применение автоматизации на современной обогатительной фабрике // Научно-исследовательский Центр «Science Discovery». 2022. № 11. С. 612-619. Chepurdeev A.A. Application of automation in a modern concentrator plant. Nauchno Issledovatel’skij Tsentr “Science Discovery”. 2022;(11):612-619. (In Russ.).

Acknowledgements

The research was carried out as part of the ‘Development and implementation of complex technologies in the areas of exploration and extraction of minerals, industrial safety, bioremediation, creation of new deep conversion products from coal raw materials while consistently reducing the environmental impact and risks to human life’ Integrated Scientific and Technical Programme of the Full Innovation Cycle, approved by Order No. 1144р of the Government of the Russian Federation dated May 11, 2022, with financial support by the Ministry of Science and Higher Education of Russian Federation, Agreement No. 075-15–2022-1201 as of September 30, 2022.

For citation

Ivanov P.P., Pachkin S.G., Kotlyarov R.V., Ivanova L.A., Mikhailova E.S. Automation of the continuous coagulant treatment process of open pit wastewaters. Ugol’. 2024;(6):101-106. (In Russ.). DOI: 10.18796/0041-5790-2024-6-101-106.

Paper info

Received April 15, 2024

Reviewed May 16, 2024

Accepted May 26, 2024

SPECIAL ISSUE




Hot from the press
Partners