
UNDERGROUND MINING
Original Paper
UDC 622.016:658.012.122:51.001.57 c K.V. Khalkechev1, Yu.M. Levkin2, N.I. Abramkin2
ISSN 0041-5790 (Print) • ISSN 2412-8333 (Online) • Ugol’ – Russian Coal Journal, 2024, № 7, pp. 52-54
DOI: http://dx.doi.org/10.18796/0041-5790-2024-7-52-54
Title
DEVELOPMENT OF A MATHEMATICAL MODEL OF THE STRESS FIELD IN THE VICINITY OF A LONGITUDINAL SHEAR MAIN CRACK IN THE MINE ROOF
Authors
K.V. Khalkechev 1, Yu.M. Levkin 2, N.I. Abramkin 2.
1 National University of Science and Technology “MISIS” (NUST “MISIS”), Moscow, 119049, Russian Federation
2 Moscow Polytechnic University, Moscow, 107023, Russian Federation e-mail: h_kemal@mail.ru
Authors Information
Khalkechev K.V. – Doctor of Physico-Mathematical Science, Doctor of Engineering Science, Professor, Department of Geology and mine surveying, National University of Science and Technology “MISIS” (NUST “MISIS”), Moscow, 119049, Russian Federation, e-mail: h_kemal@mail.ru
Levkin Yu.M. – Doctor of Engineering Science, Member of the Russian Union of Surveyors, Professor of the Department of Mining and Oil and Gas Production Technique and Technology, Moscow Polytechnic University, Moscow, 107023, Russian Federation, e-mail: lev5353@bk.ru
Abramkin N.I. – Doctor of Engineering Science, Professor of the Department of Mining and Oil and Gas Production Technique and Technology, Moscow Polytechnic University, Moscow, 107023, Russian Federation, e-mail: abramkin57@mail.ru
Abstract
In the presented article, it has been developed a mathematical model allowing to analyze an emergency mining working when a longitudinal shear main crack is found in the roof. The practical application of this model is as follows. First, using remote sensing methods, it is necessary to establish the presence of a longitudinal shear main crack in the mine roof. If this kind of crack is detected, determine its length and, using a mathematical model, define the stress field in its vicinity. Furthermore, if the tangential components of the stress tensor exceed the shear strength limits of the rocks, the growth of the main crack will be observed, which will subsequently lead to a collapse of the mine roof. In this case, the emergency mine working cannot be restored. Otherwise, there is a low probability of roof collapse, and therefore, the mine working can be restored.
Keywords
Mine restoration, LiDAR, mathematical modeling, shear stresses, tensile strength, rock, mine roof, mine roof collapse.
References
1. Evanek N., Slaker B., Iannacchione A., Miller T. LiDAR mapping of ground damage in a heading re-orientation case study. InternationalJournal of Mining Science and Technology. 2021;31(1):67-74. DOI: 10.1016/j.ijmst.2020.12.018.
2. Singh S.K., Banerjee B.P., Raval S. Three-Dimensional Unique-Identifier-Based Automated Georeferencing and Coregistration of Point Clouds in Underground Mines. Remote Sensing. 2021;13(16):3145. DOI: 10.3390/rs13163145.
3. Kim H., Choi Y. Location estimation of autonomous driving robot and 3D tunnel mapping in underground mines using pattern matched LiDAR sequential images. International Journal of Mining Science andTechnology. 2021;31(5):779-788. DOI: 10.1016/j.ijmst.2021.07.007.
4. Kumar Singh S., Pratap Banerjee B., Raval S. A review of laser scanning for geological and geotechnical applications in underground mining. International Journal of Mining Science and Technology. 2023;33(2):133-154. DOI: 10.1016/j.ijmst.2022.09.022.
5. Халкечев Р.К., Левкин Ю.М., Халкечев К.В. Разработка математической модели поля напряжений в целиках слоистой текстуры на угольных месторождениях // Уголь. 2023. № 8. С. 84-96. DOI: 10.18796/0041-5790-2023-8-84-86. Khalkechev R.K., Levkin Yu.M., Khalkechev K.V. Mathematical model development of the stress field in the pillars stratified texture in coal deposits. Ugol’. 2023;(8): 84-86. (InRuss.). DOI: 10.18796/0041-5790-2023-8-84-86.
6. Математическое обеспечение информационной системы анализа процесса разрушения трещиноватой кровли на угольных месторождениях / Р.К. Халкечев, К.В. Халкечев, Ю.М. Левкин и др. // Уголь. 2023. № 12. С. 64-66. DOI: 10.18796/0041-5790-2023-12-64-66. Khalkechev R.K., Khalkechev K.V., Levkin Yu.M., Kuzmenko S.Yu. Matematical support of the information system for analyzing the process of fractured roof destruction in coal fields. Ugol’. 2023;(12):64-66. (In Russ.). DOI: 10.18796/0041-5790-2023-8-64-66.
7. Нечеткая модель определения формы устойчивого целика в углевмещающих породах / Р.К. Халкечев, Ю.М. Левкин, К.В. Халкечев и др. // Уголь. 2024. № 1. С. 61-63. DOI: 10.18796/0041-5790-
2024-1-61-63. Khalkechev R.K., Levkin Yu.M., Khalkechev K.V., Kuzmenko S.U. Fuzzy model of the shape determining of a stable pillar in coal-bearing rocks. Ugol’. 2024;(1):61-63. (In Russ.). DOI: 10.18796/0041-5790-2024-1-61-63.
8. Bai X., Zhu P. Research on roof caving mechanism and influencing factors in inclined ore body caving mining. Results in Engineering. 2024;(22):102048. DOI: 10.1016/j.rineng.2024.102048.
9. Халкечев Р.К. Применение теории мультифрактального моделирования процессов деформирования и разрушения породных массивов с целью краткосрочного прогнозирования внезапных выбросов угля и газа // Уголь. 2019. № 7. С. 48-50. DOI: 10.18796/0041-5790-2019-7-48-50. Khalkechev R.K. Multifractal modeling theory application of rock mass deformation and destruction processes with the aim of shortterm forecasting sudden coal and gas outbursts. Ugol’. 2019;(7):48-50. (In Russ.). DOI: 10.18796/0041-5790-2019-7-48-50.
10. Халкечев Р.К. Экспертная система разработки математических моделей геомеханических процессов в породных массивах // Горный журнал. 2016. № 7. C. 96-98. DOI: 10.17580/gzh.2016.07.21. Khalkechev R.K. Expert system to develop mathematical models of geomechanical processes in rock massifs. Gornyj zhurnal. 2016;(7): 96-98. (In Russ.). DOI: 10.17580/gzh.2016.07.21.
11. ЧерепановГ.П. Механикахрупкогоразрушения. М: Наука, 1974. 640 с.
12. Халкечев Р.К. Нечеткая математическая модель изменения концентрации трещин в минерале под действием внешней нагрузки // Горный информационно-аналитический бюллетень (научно-технический журнал). 2019. № 6. С. 97-105. DOI: 10.25018/0236-1493-2019-06-0-97-105. Khalkechev R.K. Fuzzy mathematical model of fracture concentration changes in a mineral under external load. Gornyj informatsionno-analiticheskij byulleten'. 2019;(6):97-105. (InRuss.). DOI: 10.25018/0236-1493-2019-06-0-97-105.
13. Халкечев Р.К. Теория мультифрактального моделирования процессов деформирования и разрушения породных массивов как основа автоматизации технологии буровзрывных работ на угольных разрезах // Уголь. 2019. № 11. С. 32-34. DOI: 10.18796/0041-5790-2019-11-32-34. Khalkechev R.K. Multifractal modeling theory of rock mass deformation and destruction as the basis for automation of drilling and blasting technologies in coal open-pit mines. Ugol’. 2019;(11):32-34. (In Russ.). DOI: 10.18796/0041-5790-2019-11-32-34.
14. Халкечева Л.К., Халкечев Р.К. Автоматизированная система мониторинга состояния транспортных берм на предмет оползневой опасности в виде проседания // Уголь. 2022. № 4. С. 50-52. DOI: 10.18796/0041-5790-2022-4-50-52. Khalkecheva L.K., Khalkechev R.K. Automated monitoring system of transport berms condition for landslide danger in the form of subsidence. Ugol’. 2022;(4):50-52. (In Russ.). DOI: 10.18796/0041-5790-2022-4-50-52.
For citation
Khalkechev K.V., Levkin Yu.M., Abramkin N.I. Development of a mathematical model of the stress field in the vicinity of a longitudinal shear main crack in the mine roof. Ugol’. 2024;(7): 52-54. (In Russ.). DOI: 10.18796/0041-5790-2024-7-52-54.
Paper info
Received June 12, 2024
Reviewed June 16, 2024
Accepted June 25, 2024