
ECOLOGY
Original Paper
UDC 65.011.56 c P.P. Ivanov1, S.G. Pachkin1, V.P. Ivanova2, A.G. Semenov1, E.S. Mikhaylova 1
ISSN 0041-5790 (Print) • ISSN 2412-8333 (Online) • Ugol’ – Russian Coal Journal, 2024, № 7, pp. 84-90
DOI: http://dx.doi.org/10.18796/0041-5790-2024-7-84-90
Title
AUTOMATION OF THE PH CONTROL PROCESS IN TREATMENT OF SURFACE COAL MINE RUNOFF WATER
Authors
P.P. Ivanov 1, S.G. Pachkin 1, V.P. Ivanova 2, A.G. Semenov 1, E.S. Mikhaylova 1.
1 Kemerovo State University, Kemerovo, 650000, Russian Federation
2 Siberian State Medical University, Tomsk, 634050, Russian Federation e-mail: ipp7@yandex.ru
Authors Information
Ivanov P.P. – PhD (Engineering), Associate Professor, Associate Professor of Department of Mechatronics and Automation of Technological Systems, Kemerovo State University, Kemerovo, 650000, Russian Federation, e-mail: ipp7@yandex.ru
Pachkin S.G. – PhD (Engineering), Associate Professor, Associate Professor of Department of Mechatronics and Automation of Technological Systems, Kemerovo State University, Kemerovo, 650000, Russian Federation,
e-mail: sergon777@inbox.ru
Ivanova V.P. – Undergraduate student, Siberian State Medical University, Tomsk, 634050, Russian Federation, e-mail: ianova.vera@mail.ru
Semenov A.G. – Doctor of Engineering Sciences, Professor, Department of Theory and Methods of Teaching Natural Science and Mathematical Disciplines, Kemerovo State University, Kemerovo, 650000, Russian Federation, e-mail: agsem55@yandex.ru
Mikhaylova E.S. – PhD (Chemistry), Director of the Institute of Nano-, Bio-, information, Cognitive and Socio-humanitarian Technologies, Head of the Department for Implementation of Integrated Scientific and Technical Program, Kemerovo State University, Kemerovo, 650000, Russian Federation, e-mail: e_s_mihaylova@mail.ru
Abstract
Development of the coal mining industry in Kuzbass is shifting towards the expansion of surface coal mining, increasing the man-made load on the environment, in particular, intensifying pollution of the surface and ground waters within the coal mining territory. To ensure the required level of surface mine runoff water treatment, a reactant-based processing technology is recommended, which implies treatment of the runoff water with coagulating and flocculating agents. However, to ensure efficiency of the coagulation process it is necessary to maintain the pH level in the runoff water within the range of 7.5-8.5 units. This condition requires an obligatory pH correction by introducing a continuous mixer into the process flow and development of an automatic control system for the neutralization process. The main challenge in designing systems for automatic pH control is the non-linear nature of the titration curve, the static and dynamic characteristics of the process, as well as a significant difference between the rates of the mixing flows (wastewater and the reactant). Continuous closed-loop automated control systems (ACS) implementing the proportional-integral or the proportional-integral differential controls are the most common ways of addressing this challenge. However, finding the optimal settings of these regulators is a complex mathematical problem which is further complicated by the previously mentioned specific technological features of the neutralization process, as well as by the need for constant manual adjustment of the system caused by rigid tuning of the regulator parameters. This fact explains the need to search for new control methods, in particular, to use fuzzy logic in solving control tasks for nonlinear processes, which was implemented in this work.
Keywords
Surface mine runoff water, treatment, neutralization, pH control, fuzzy logic controller, nonlinear characteristics.
References
1. Способы снижения воздействия горнодобывающей отрасли на водные экосистемы / А.К. Горелкина, И.В. Тимощук, Н.С. Голубева и др. // Горный информационно-аналитический бюллетень (научно-технический журнал). 2023. № 7. С. 64-75. DOI: 10.25018/0236-1493-2023-7-0-64. G orelkina A.K., Timoshchuk I.V., Golubeva N.S., Belyaeva O.V., Mikhailova E.S. Reduction of impact of mining on water ecosystems. Gornyj informatsionno-analiticheskij byulleten’. 2023;(7):64-75. (InRuss.). DOI: 10.25018/0236-1493-2023-7-0-64.
2. Васянович Ю.А., Лушпей В.П., Музыченко О.В. Возможности использования шахтных и карьерных вод для нужд населенных пунктов в угледобывающих регионах // Горный информационно-аналитический бюллетень (научно-технический журнал). 2013. № S22. С. 116-120. Vasyanovich Yu.A., Lushpey V.P., Muzychenko O.V. Usability of surface and underground mine water for needs of communities in coal mining regions. Gornyj informatsionno-analiticheskij byulleten’. 2013;(S22):116-120. (In Russ.).
3. Современные биологические методы восстановления и очистки нарушенных угледобычей земель в условиях кемеровской области – Кузбасса / Н.В. Фотина, В.П. Емельяненко, Е.Е. Воробьева и др. // Техника и технология пищевых производств. 2021. Т. 51. № 4. С. 869-882. DOI: 10.21603/2074-9414-2021-4-869-882. F otina N.V., Emelianenko V.P., Vorobyeva E.E., Burova N.V., Ostapova E.V. Contemporary Biological Methods of Mine Reclamation in the Kemerovo Region – Kuzbass. Tehnika i tehnologiya pischevyh proizvodstv. 2021;51(4):869-882. (In Russ.). DOI: 10.21603/2074-9414- 2021-4-869-882.
4. Оценка эффективности очистки сточных вод угледобывающего предприятия и ее влияние на загрязнение малых рек / Л.А. Иванова, Н.С. Голубева, И.В. Тимощук и др. // Экология и промышленность России. 2023. Т. 27. № 1. С. 60-65. DOI: 10.18412/1816-0395-2023-1-60-65. Ivanova L.A., Golubeva N.S., Timoshchuk I.V., Gorelkina A.K., Prosekov A.Yu., Sapurin Z.P., Medvedev A.V. Evaluation of the efficiency of wastewater treatment of a coal mining enterprise and its impact on the pollution of small rivers. Ekologiya i promyshlennost’ Rossii. 2023;27(1):60-65. (InRuss.). DOI: 10.18412/1816-0395-2023-1-60-65.
5. Филатова Е.Г. Обзор технологий очистки сточных вод от ионов тяжелых металлов, основанных на физико-химических процессах // Известия вузов. Прикладнаяхимияибиотехнология. 2015. № 2. С. 97-109. F ilatova E.G. Review of wastewater treatment technologies from heavy metal ions based on physico-chemical processes. Izvestiya vuzov.Prikladnaya khimiya I biotekhnologiya. 2015;(2):97-109. (In Russ.).
6. ГеоэкологияместорожденийугляигорючихсланцевСССР. Т. 2. М.: Недра, 1963. 1210 с.
7. Счастливцев Е.Л., Пушкин С.Г., Юкина Н.И. Гидроэкологические проблемы недропользования в Кузбассе // Горный информационно-аналитический бюллетень (научно-технический журнал). 2010. № S4. С. 419-429. Shchastlivtsev E.L., Pushkin S.G., Yukina N.I. Hydroecological problems of subsurface use in Kuzbass. Gornyj informatsionno-analiticheskijbyulleten’. 2010;(S4):419-429. (In Russ.).
8. МичуринР.А. Оценкакачествапереходногопроцессасистемырегулирования pH шахтныхсточныхвод // Электронныеинформационныесистемы. 2015. № 3(6). С. 34-42. Michurin R.A. Assessment of the quality of the transition process of the pH regulation system of mine wastewater. Elektronnye informatsionnye
sistemy. 2015;(6):34-42. (In Russ.).
9. ПотаповВ.П. ГеоэкологияугледобывающихрайоновКузбасса: монография. Новосибирск: Наука, 2005. 650 с.
10. Патент № 2284048 C2 Российская Федерация, МПК G05D 21/00, C02F 1/66, C02F 103/06. Способ автоматического регулирования величины pH водных растворов: № 2004134297/15: заявл. 24.11.2004: опубл. 20.09.2006 / З.А. Байназаров, С.В. Бурдыгина, В.Н. Горин и др.; заявитель Закрытое акционерное общество ?Каустик?.
11. Патент № 2578045 C1 Российская Федерация, МПК G05D 21/02. Способ автоматического регулирования величины pH циркуляционной воды контура охлаждения статора электрогенератора паровой турбины: № 2014145048/28: заявл. 06.11.2014: опубл. 20.03.2016 / Б.М. Ларин, А.Б. Ларин, Е.А. Карпычев; заявитель Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования ?Ивановский государственный энергетический университет имени В.И. Ленина? (ИГЭУ).
12. Bratsun D, Mizev A., Utochkin V., Nekrasov S., Shmyrova А. Nonlinear development of convective patterns driven by a neutralization reaction in immiscible two-layer systems. Philosophical Transactions ofthe Royal Society A. 2023;381(2245):20220178.
13. Фетисова Н.Ф. Оценка расхода реагентов для нейтрализации кислых шахтных вод на основе моделирования кривых титрования // Горное эхо. 2023. № 2(91). С. 19-25. DOI: 10.7242/echo.2023.2.4.
F etisova N.F. Estimation of reagent consumption for neutralization of acid mine waters based on titration curve modeling. Gornoe echo. 2023;(91):19-25. (InRuss.). DOI: 10.7242/echo.2023.2.4.
14. Беккер В.Ф., Камаев Д.С. Измерение и регулирование кислотности среды в процессе промышленной нейтрализации // Промышленные АСУ и контроллеры. 2013. № 6. С. 27-34. Becker V.F., Kamaev D.S. Measuring and regulating the acidity of the medium in the process of industrial neutralization. PromyshlennyeASU i kontrollery. 2013;(6):27-34.
15. Popov A., Farag A., Werner H. ?Tuning of a PID controller Using a Multi-objective Optimization Technique Applied to A Neutralization Plant,? Decision and Control, 2005 and 2005 European Control Conference. CDC-ECC ‘05. 44th IEEE Conference.
16. Jari M. Bolinga, Dale E. Seborgb, Joa P. Hespanhac, Multimodel adaptive control of a simulated pH neutralization process. ControlEngineering Practice. 2007;(15):663-672.
17. Sanaz Mahmoodia, Javad Poshtana, Mohammad Reza, Jahed-Motlaghb, Allahyar Montazeria. Nonlinear model predictive control of a pH neutralization process based on Wiener-Laguerre model. Chemical
Engineering Journal. 2009;(146):328-337.
18. A rmenio L.B. et al. Model predictive control design for dynamical systems learned by echo state networks. IEEE Control Systems Letters. 2019;3(4):1044-1049.
19. D r. Magan. P. Ghatule. Design And Development Of Ph Neutralization Process: A Fuzzy Logic Based Electronics Sensing And Control System, Vol. 2, Is. 8, August 2013.
20. Зо М.Н. Разработка системы управления позиционированием сервопривода с применением ПИД-регулятора и контроллера нечеткой логики // Известия высших учебных заведений. Электроника. 2021. Т. 26. № 6. С. 583-588. DOI: 10.24151/1561-5405-2021-26-6-583-588. Zo M.N. Development of a servo positioning control system using a PID controller and a fuzzy logic controller. Izvestiya vysshykhuchebnykh zavedenij. Elektronika.2021;26(6):583-588. (In Russ.). DOI: 10.24151/1561-5405-2021-26-6-583-588.
Acknowledgements
The research was carried out as part of the ‘Development and implementation of complex technologies in the areas of exploration and extraction of minerals, industrial safety, bioremediation, creation of new deep conversion products from coal raw materials while consistently reducing the environmental impact and risks to human life’ Integrated Scientific and Technical Programme of the Full Innovation Cycle, approved by Order No. 1144р of the Government of the Russian Federation dated May 11, 2022, with financial support by the Ministry of Science and Higher Education of Russian Federation, Agreement No. 075-15–2022-1201 as of September 30, 2022.
For citation
Ivanov P.P., Pachkin S.G., Ivanova V.P., Semenov A.G., Mikhaylova E.S. Automation of the pH control process in treatment of surface coal mine runoff water. Ugol’. 2024;(7):84-90. (In Russ.). DOI: 10.18796/0041-5790-2024-7-84-90.
Paper info
Received February 27, 2024
Reviewed June 16, 2024
Accepted June 25, 2024